Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Mol Diagn ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582399

RESUMO

Lymphoid malignancies are a heterogeneous group of hematological disorders characterized by a diverse range of morphologic, immunophenotypic, and clinical features. Next-generation sequencing (NGS) is increasingly being applied to delineate the complex nature of these malignancies and identify high-value biomarkers with diagnostic, prognostic, or therapeutic benefit. However, there are various challenges in using NGS routinely to characterize lymphoid malignancies, including pre-analytic issues, such as sequencing DNA from formalin-fixed, paraffin-embedded tissue, and optimizing the bioinformatic workflow for accurate variant calling and filtering. This study reports the clinical validation of a custom capture-based NGS panel to test for molecular markers in a range of lymphoproliferative diseases and histiocytic neoplasms. The fully validated clinical assay represents an accurate and sensitive tool for detection of single-nucleotide variants and small insertion/deletion events to facilitate the characterization and management of patients with hematologic cancers specifically of lymphoid origin.

2.
Haematologica ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299584

RESUMO

The BCL6-corepressor (BCOR) is a tumor-suppressor gene located on the short arm of chromosome X. Data is limited regarding factors predicting survival in BCOR-mutated (mBCOR) acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). We evaluated 138 patients with mBCOR myeloid disorders, of which 36 (26.1%) had AML and 63 (45.6%) had MDS. Sixty-six (47.8%) patients had a normal karyotype while 18 (13%) patients had complex karyotype. BCOR-mutated MDS/AML were highly associated with RUNX1 and U2AF1 comutations. In contrast, TP53 mutation was infrequently seen with mBCOR MDS. Patients with an isolated BCOR mutation had similar survival compared to those with high-risk co-mutations by ELN 2022 criteria (median OS 1.16 vs. 1.27 years, P = 0.46). Complex karyotype adversely impacted survival among mBCOR AML/MDS (HR 4.12, P < 0.001), while allogeneic stem cell transplant (alloSCT) improved survival (HR 0.38, P = 0.04). However, RUNX1 co-mutation was associated with an increased risk of post-alloSCT relapse (HR 88.0, P = 0.02), whereas melphalan-based conditioning was associated with a decreased relapse-risk (HR 0.02, P = 0.01). We conclude that mBCOR is a high-risk feature across MDS/AML and that alloSCT improves survival in this population.

3.
Blood Cancer J ; 13(1): 122, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567878

RESUMO

We surveyed the performance of ponatinib, as salvage therapy, in a real-world setting of chronic phase chronic myeloid leukemia (CML-CP). Among 55 consecutive patients (median age 49 years) with relapsed/refractory CML-CP, 35 (64%) had failed ≥3 tyrosine kinase inhibitors (TKIs), 35 (64%) were pre-treated with nilotinib, and 14 (28%) harbored ABL1T315I. At start of ponatinib (median dose 30 mg/day), 40 patients were already in complete hematologic (CHR), 4 in complete cytogenetic (CCyR), 3 in major molecular (MMR) remission, while 8 had not achieved CHR (NR). Ponatinib improved the depth of response in 13 (33%), 3 (75%), 2 (66%), and 4 (50%) patients with CHR, CCyR, MMR, and NR, respectively (p = 0.02). At a median follow-up of 42 months, 13 (23%) deaths, 5 (9%) blast transformations, and 25 (45%) allogeneic transplants were recorded. Five/10-year post-ponatinib survival was 77%/58% with no significant difference when patients were stratified by allogeneic transplant (p = 0.94), ponatinib-induced deeper response (p = 0.28), or a post-ponatinib ≥CCyR vs CHR remission state (p = 0.25). ABL1T315I was detrimental to survival (p = 0.04) but did not appear to affect response. Prior exposure to nilotinib was associated with higher risk of arterial occlusive events (AOEs; 11% vs 0%; age-adjusted p = 0.04). Ponatinib starting/maintenance dose (45 vs 15 mg/day) did not influence either treatment response or AOEs. Our observations support the use of a lower starting/maintenance dose for ponatinib in relapsed/refractory CML-CP but a survival advantage for deeper responses was not apparent and treatment might not overcome the detrimental impact of ABL1T315I on survival. The association between prior exposure to nilotinib and a higher risk of post-ponatinib AOEs requires further validation.


Assuntos
Imidazóis , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Pessoa de Meia-Idade , Antineoplásicos/uso terapêutico , Imidazóis/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico
4.
Mod Pathol ; 36(10): 100268, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37406859

RESUMO

Malignant histiocytoses (MHs), or the 'M group' of the Histiocyte Society classification, are characterized by neoplastic histiocytes with large pleomorphic nuclei. MH encompasses the diagnoses of histiocytic sarcoma, interdigitating dendritic cell sarcoma, and Langerhans cell sarcoma. We aimed to define the phenotypic spectrum of MH and examine the genotypic features across this spectrum. Using immunohistochemistry, we arranged the 22 cases into 4 subtypes that correspond to the lines of differentiation from monocytic and dendritic cell precursors as follows: (1) macrophage (n = 5): CD68+, CD163+, CD14+, and Factor 13a+; (2) monocyte-macrophage (n = 5): CD68+, CD163+, CD14+, S100+, and OCT2+; (3) dendritic cell (n = 6): CD68+, CD11c+, S100+, lysozyme+, ZBTB46+, and CD1a/langerin < 5%; and (4) Langerhans cell (n = 6): CD68+, CD11c+, S100+, ZBTB46+, CD1a+, and langerin+. The phenotypic subtypes align with those seen in low-grade histiocytic neoplasms as follows: MH-macrophage type correlates with Erdheim-Chester disease phenotype; MH-monocyte-macrophage type with Rosai-Dorfman disease phenotype, and MH-Langerhans cell type with Langerhans cell histiocytosis. Activating mutations in MAPK-pathway genes were identified in 80% of MH cases; 29% had mutations in the PI3k-AKT-mTOR pathway and 59% had mutations in epigenetic modulating genes. Strong expression of cyclin D1 was present in all cases, whereas p-ERK and p-AKT were not uniformly expressed. Eight of 22 (36%) MH cases were proven to be clonally related to a prior B-cell lymphoma. Defining the phenotypic spectrum of MH provides a guide to diagnosis and allows further exploration into the potential biological and clinical significance.

5.
Br J Haematol ; 202(2): 279-283, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37144345

RESUMO

ETV6 mutations are rare but recurrent somatic events in myeloid neoplasms and are negatively prognostic in myelodysplastic syndrome. We set out to examine the clinical and molecular characteristics of patients undergoing investigation for myeloid neoplasms, found to have deleterious ETV6 mutations. ETV6 mutations occurred in 33 of 5793 (0.6%) cases investigated and predominantly in high-risk disease entities including MDS with increased blasts, primary myelofibrosis and AML, myelodysplasia-related. In three cases, isolated iso (17q) karyotype was concurrently detected, an otherwise rare karyotype in myeloid neoplasms. ETV6 mutations were frequently subclonal and never occurred as an isolated abnormality with ASXL1 (n = 22, 75%), SRSF2 (n = 14, 42%) and SETBP1 (n = 11, 33%) the predominant co-mutations. Restricting to patients with MDS, higher rates of ASXL1, SETBP1, RUNX1 and U2AF1 mutations occurred in ETV6 mutated cases, relative to a consecutive control cohort with wild-type ETV6. The median OS of the cohort was 17.5 months. This report highlights the clinical and molecular associations of somatic ETV6 mutations in myeloid neoplasms, suggests their occurrence as a later event, and proposes further translational research questions for their role in myeloid neoplasia.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/genética , Prognóstico
6.
J Mol Diagn ; 25(8): 602-610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236547

RESUMO

Innovation in sequencing instrumentation is increasing the per-batch data volumes and decreasing the per-base costs. Multiplexed chemistry protocols after the addition of index tags have further contributed to efficient and cost-effective sequencer utilization. With these pooled processing strategies, however, comes an increased risk of sample contamination. Sample contamination poses a risk of missing critical variants in a patient sample or wrongly reporting variants derived from the contaminant, which are particularly relevant issues in oncology specimen testing in which low variant allele frequencies have clinical relevance. Small custom-targeted next-generation sequencing (NGS) panels yield limited variants and pose challenges in delineating true somatic variants versus contamination calls. A number of popular contamination identification tools have the ability to perform well in whole-genome/exome sequencing data; however, in smaller gene panels, there are fewer variant candidates for the tools to perform accurately. To prevent clinical reporting of potentially contaminated samples in small next-generation sequencing panels, we have developed MICon (Microhaplotype Contamination detection), a novel contamination detection model that uses microhaplotype site variant allele frequencies. In a heterogeneous hold-out test cohort of 210 samples, the model displayed state-of-the-art performance with an area under the receiver-operating characteristic curve of 0.995.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Laboratórios , Humanos , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Aprendizado de Máquina Supervisionado
9.
SLAS Technol ; 27(3): 214-218, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35058215

RESUMO

Capture-based library preparation for next generation sequencing (NGS) offers a balance between sequencing depth and bioinformatics cost of analysis. Liquid handling automation enhances the reliability of the library preparation process by reducing sample-to-sample variation and substantially enhances throughput, particularly when it can be employed in a 'walk-away' fashion with limited hands-on interaction. This requires complex series of mixing and heating steps like those utilized in capture chemistries to happen on the liquid handler. While developing liquid handling automation for Integrated DNA Technologies (IDT) xGen Exome, Illumina TruSight Oncology 500, and Personal Genome Diagnostics (PGDx) elio Plasma Resolve chemistries on the PerkinElmer Sciclone liquid handler, we found that applying the capture temperatures recommended for manual library preparation results in low yield on automation. To restore the final library yield, we reduced bead binding and/or heated wash temperatures of the Peltier heaters on the liquid handlers by about 10°C. Since this applied across three unique capture-based chemistries, we consider this a generalizable principle of automating capture on the Sciclone. We hypothesize that this is driven by the very different thermodynamic environments represented by a sealed plate on a thermal cycler and a plate with a lid on a Peltier heater. This phenomenon should be considered when automating NGS library preparation on PerkinElmer Sciclone instruments.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Automação , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reprodutibilidade dos Testes , Temperatura
10.
Blood Adv ; 6(3): 1064-1073, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34872104

RESUMO

Leukemia stem cells (LSCs) are linked to relapse in acute myeloid leukemia (AML). The LSC17 gene expression score robustly captures LSC stemness properties in AML and can be used to predict survival outcomes and response to therapy, enabling risk-adapted, upfront treatment approaches. The LSC17 score was developed and validated in a research setting. To enable widespread use of the LSC17 score in clinical decision making, we established a laboratory-developed test (LDT) for the LSC17 score that can be deployed broadly in clinical molecular diagnostic laboratories. We extensively validated the LSC17 LDT in a College of American Pathologists/Clinical Laboratory Improvements Act (CAP/CLIA)-certified laboratory, determining specimen requirements, a synthetic control, and performance parameters for the assay. Importantly, we correlated values from the LSC17 LDT to clinical outcome in a reference cohort of patients with AML, establishing a median assay value that can be used for clinical risk stratification of individual patients with newly diagnosed AML. The assay was established in a second independent CAP/CLIA-certified laboratory, and its technical performance was validated using an independent cohort of patient samples, demonstrating that the LSC17 LDT can be readily implemented in other settings. This study enables the clinical use of the LSC17 score for upfront risk-adapted management of patients with AML.


Assuntos
Laboratórios Clínicos , Leucemia Mieloide Aguda , Estudos de Coortes , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Medição de Risco
11.
J Mol Diagn ; 23(12): 1732-1740, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34839893

RESUMO

Complex insertion-deletion (indel) events in the globin genes manifest in widely variable clinical phenotypes. Many are incompletely characterized because of a historic lack of efficient methods. A more complete assessment enables improved prediction of clinical impact, which guides emerging therapeutic choices. Current methods have limited capacity for breakpoint assignment and accurate assessment of mutation extent, especially in cases containing duplications or multiple deletions and insertions. Technology, such as long-read sequencing, holds promise for significant impact in the characterization of indel events because of read lengths that span large regions, resulting in improved resolution. Four known complex ß-globin gene cluster indel types were assessed using single-molecule, real-time sequencing technology and showed high correlation with previous reports, including the Caribbean locus control deletion (g.5,305,478_5,310,336del), a large ß-gene duplication containing the Hb S mutation (g.4,640,335_5,290,171dup with g.5,248,232T>A, c.20A>T; variant allele fraction, 64%), and two nested variants (double deletions with intervening inversion): the Indian Gγ(Aγδß)0-thalassemia (g.5,246,804-5,254,275del, g.5,254,276_5,269,600inv, and g.5,269,601_5,270,442del) and the Turkish/Macedonian (δß)0 thalassemia (g.5,235,064_5,236,652del, g.5,236,653_5,244,280inv, and g.5,244,281_5,255,766del). Our data confirm long-read sequencing as an efficient and accurate method to identify these clinically significant complex events. Limitations include high-complexity sample preparation requirements, which hinder routine use in clinical laboratories. Continued improvements in sample and data workflow processes are needed to accommodate volumes in a tertiary clinical laboratory.


Assuntos
Análise de Sequência de DNA/métodos , Talassemia/genética , Globinas beta/genética , Anemia Falciforme/genética , Feminino , Duplicação Gênica , Heterozigoto , Humanos , Índia , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Família Multigênica , Globinas beta/análise
12.
Mol Diagn Ther ; 25(4): 517-526, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125426

RESUMO

INTRODUCTION: Accurate classification of somatic genetic alterations detected by next-generation sequencing (NGS) assays is of paramount importance to ensure the provision of high-quality clinical data. Clinical significance of variants can be assessed and tiered based on guidelines from the Association for Molecular Pathology (AMP), the American Society of Clinical Oncology, and the College of American Pathology for the interpretation of somatic sequence variants identified in cancer. METHODS: We sought to develop a formal structured approach for the classification of somatic variants in hematologic neoplasms, to account for both a variant's clinical significance and its ability to drive tumorigenesis, by adapting elements from these existing guidelines. However, we additionally utilized key criteria from the American College of Medical Genetics/AMP standards for variant reporting to focus evaluation into specific categories of evidence and to gauge the effect of a given variant on tumorigenesis. RESULTS: The combined approach was applied to the annotation of 87 variants identified by a targeted NGS panel for myeloid neoplasms. In the application of our variant evaluation, we classified 2/87 variants as benign, 6/87 as likely benign, 56/87 as variants of unknown significance (VUS), 13/87 variants as likely pathogenic, and 10/87 variants as pathogenic. CONCLUSION: Well-established oncogenic alterations were accurately classified as pathogenic. Although there is no defined benchmark for the remaining variants, drawing from two existing guidelines enabled the creation of a modified curation process for variant interpretation that emphasizes systematic review of relevant evidence.


Assuntos
Variação Genética , Neoplasias Hematológicas/genética , Projetos de Pesquisa/normas , Algoritmos , Guias como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
13.
Am J Clin Pathol ; 156(4): 679-690, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-33978189

RESUMO

OBJECTIVES: SF3B1 mutations are the most common mutations in myelodysplastic syndromes (MDS). The International Working Group for the Prognosis of MDS (IWG-PM) recently proposed SF3B1-mutant MDS (SF3B1-mut-MDS) as a distinct disease subtype. We evaluated the spectrum and molecular landscape of SF3B1-mutated myeloid disorders and assessed the prognostication in MDS harboring SF3B1 mutations (MDS-SF3B1). METHODS: Cases were selected by retrospective review. Clinical course and laboratory and clinical findings were collected by chart review. SF3B1-mut-MDS was classified following IWG-PM criteria. RESULTS: SF3B1 mutations were identified in 75 of 955 patients, encompassing a full spectrum of myeloid disorders. In MDS-SF3B1, Revised International Prognostic Scoring System (IPSS-R) score greater than 3 and transcription factor (TF) comutations were adverse prognostic markers by both univariate and multivariate analyses. We confirmed the favorable outcome of IWG-PM-defined SF3B1-mut-MDS. Interestingly, it did not show sharp prognostic differentiation within MDS-SF3B1. CONCLUSIONS: SF3B1 mutations occur in the full spectrum of myeloid disorders. We independently validated the favorable prognostication of IWG-PM-defined SF3B1-mut-MDS. However it may not provide sharp prognostication within MDS-SF3B1 where IPSS-R and TF comutations were prognostic-informative. Larger cohort studies are warranted to verify these findings and refine MDS-SF3B1 prognostication.


Assuntos
Síndromes Mielodisplásicas/genética , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/patologia , Prognóstico , Estudos Retrospectivos
14.
Genes Chromosomes Cancer ; 60(2): 108-111, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33078871

RESUMO

Acute undifferentiated leukemia (AUL) is a very rare hematologic neoplasm that expresses no markers specific for either myeloid or lymphoid lineages. While commonly observed in several acute leukemias, KMT2A rearrangements in AUL have been rarely reported in the literature. We report the third case to our knowledge of AUL harboring a KMT2A rearrangement. Furthermore, the KMT2A/GIMAP8 gene fusion identified in this case represents a novel KMT2A rearrangement.


Assuntos
GTP Fosfo-Hidrolases/genética , Histona-Lisina N-Metiltransferase/genética , Leucemia Aguda Bifenotípica/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Criança , Humanos , Leucemia Aguda Bifenotípica/patologia , Masculino
15.
Haematologica ; 106(6): 1714-1724, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32414854

RESUMO

Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a recently characterized T-cell malignancy that has raised significant patient safety concerns and led to worldwide impact on the implants used and clinical management of patients undergoing reconstructive or cosmetic breast surgery. Molecular signatures distinguishing BIA-ALCL from other ALCLs have not been fully elucidated and classification of BIA-ALCL as a WHO entity remains provisional. We performed RNA sequencing and gene set enrichment analysis comparing BIA-ALCLs to non-BIA-ALCLs and identified dramatic upregulation of hypoxia signaling genes including the hypoxia-associated biomarker CA9 (carbonic anyhydrase-9). Immunohistochemistry validated CA9 expression in all BIA-ALCLs, with only minimal expression in non-BIA-ALCLs. Growth induction in BIA-ALCL-derived cell lines cultured under hypoxic conditions was proportional to up-regulation of CA9 expression, and RNA sequencing demonstrated induction of the same gene signature observed in BIA-ALCL tissue samples compared to non-BIA-ALCLs. CA9 silencing blocked hypoxia-induced BIA-ALCL cell growth and cell cycle-associated gene expression, whereas CA9 overexpression in BIA-ALCL cells promoted growth in a xenograft mouse model. Furthermore, CA9 was secreted into BIA-ALCL cell line supernatants and was markedly elevated in human BIA-ALCL seroma samples. Finally, serum CA9 concentrations in mice bearing BIA-ALCL xenografts were significantly elevated compared to control serum. Together, these findings characterize BIA-ALCL as a hypoxia-associated neoplasm, likely attributable to the unique microenvironment in which it arises. These data support classification of BIA-ALCL as a distinct entity and uncover opportunities for investigating hypoxia-related proteins such as CA9 as novel biomarkers and therapeutic targets in this disease.


Assuntos
Implantes de Mama , Neoplasias da Mama , Linfoma Anaplásico de Células Grandes , Animais , Implantes de Mama/efeitos adversos , Feminino , Humanos , Hipóxia/genética , Imuno-Histoquímica , Linfoma Anaplásico de Células Grandes/genética , Camundongos , Microambiente Tumoral
16.
Am J Clin Pathol ; 156(1): 129-138, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33313700

RESUMO

OBJECTIVES: Pure erythroid leukemia (PEL) is exceptionally rare in the pediatric setting. Four pediatric PEL cases with t(1;16)(p31;q24) NFIA-CBFA2T3 were reported previously. We present a case of an infant with PEL presenting with erythroblastic sarcoma and harboring a novel t(1;8)(p31.3;q21.3) NFIA-RUNX1T1 fusion detected by RNA sequencing and conventional karyotype. METHODS: Bone marrow (BM) and abdominal mass biopsies from the patient were evaluated with extensive immunohistochemical, flow cytometric, cytogenetic, and molecular studies. RESULTS: The patient was a female infant who presented between 2 and 5 months of age with cytopenias and an enlarging abdominal mass. Blasts in the BM and abdominal mass expressed CD71 and CD117 with focal expression of CD43, E-cadherin, epithelial membrane antigen, and hemoglobin A. They were negative for additional myeloid, lymphoid, and nonhematolymphoid markers. These findings were most consistent with PEL and erythroblastic sarcoma. RNA sequencing revealed the novel NFIA-RUNX1T1 fusion. CONCLUSIONS: Along with the previously reported PELs with NFIA-CBFA2T3 fusions, we describe a subset of PELs that occur in children, that frequently display extramedullary disease, and that harbor rearrangements of NFIA with core binding factor genes. We hypothesize that, together, these cases represent a rare but distinct clinicopathologic group of pediatric PELs with recurrent genetic abnormality.


Assuntos
Leucemia Eritroblástica Aguda/genética , Fatores de Transcrição NFI/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Feminino , Humanos , Lactente , Leucemia Eritroblástica Aguda/patologia , Fusão Oncogênica/genética , Translocação Genética
17.
Front Cell Dev Biol ; 8: 357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509784

RESUMO

Somatic hypermutation (SHM) status provides an important prognostic indicator for chronic lymphocytic leukemia (CLL), a very common type of mature B-cell leukemia. Owing to the adverse prognosis associated with an unmutated immunoglobulin heavy chain variable (IGHV) status, SHM testing is performed as a standard of care in CLL. Conventionally, SHM testing has been performed using labor intensive and primarily analog Sanger sequencing method following PCR amplification of the clonal immunoglobulin heavy chain gene rearrangements in CLL cells. In comparison, recent availability of next generation sequencing (NGS) allows more versatile detection and direct identification of clonal immunoglobulin gene rearrangements in neoplastic B-cell populations. The ability to identify specific clonal IGHV signature(s) in both baseline (diagnostic) and post-treatment settings enables unique clinical applications of NGS such as determination of SHM status, minimal residual disease (MRD) monitoring, clonal heterogeneity and B cell receptor IG stereotypy. We provide a review of current practices and recommendations for SHM determination using NGS including examples of difficult cases.

20.
Am J Clin Pathol ; 153(5): 656-663, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31977035

RESUMO

OBJECTIVES: Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) is a heterogeneous category with a broad range of underlying genetic abnormalities. We investigated the significance of genetic factors in a large series of AML-MRC cases. METHODS: The morphologic findings, genetic data, and patient outcomes were assessed in 186 AML-MRC cases. RESULTS: The median overall survival (OS) was dismal in AML-MRC patients (median, 7.6 months; 95% confidence interval, 5-10.6 months). Karyotypically normal cases and cytogenetically abnormal cases without myelodysplastic syndrome (MDS)-related cytogenetic abnormalities showed similar OS, significantly better than cases carrying MDS-related cytogenetic abnormalities. MDS-related cytogenetic abnormalities, monosomal or complex karyotype, and history of MDS or myelodysplastic/myeloproliferative neoplasm were all associated with dismal outcome. CONCLUSIONS: AML-MRC predicts a poor prognosis. Our study supports the finding that the genetic profile plays a key role in determining prognosis in AML-MRC as defined according to the World Health Organization revised fourth edition (2017) diagnostic criteria.


Assuntos
Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Feminino , Humanos , Cariotipagem , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/patologia , Proteínas Nucleares/genética , Nucleofosmina , Prognóstico , Taxa de Sobrevida , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...